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High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is like developing on CPU»
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High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side (once you have a flow which transparently 
instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe 
communication, FIFO and streamed channels, …)
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High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side (once you have a flow which transparently 
instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe 
communication, FIFO and streamed channels, …)

float ScalarProduct(float a[N], float b[N]) {

float sum = 0;

for (i=0; i<N; i++)

sum += a[i]*b[i];

return sum;}
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High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side (once you have a flow which transparently 
instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe 
communication, FIFO and streamed channels, …)

float ScalarProduct(float a[N], float b[N]) {

float sum = 0;

for (i=0; i<N; i++)

sum += a[i]*b[i];

return sum;}
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In 5 min (plus ~ 1 hour of compile time)
we obtain a working design which 
computes the scalar product



High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed 
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High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N*LatencyAdd cycles to be executed 

- each add is dependent on the result of the previous add; 

- we suppose that compiler will be able to overlap the 

- reads from the two memory banks (a[i] and b[i]) 

- the a[i-1]*b[i-1] multiply

- and the sum = sum + result of a[i-2]*b[i-2]
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High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed 

2N-1 operations => ≈ 2/ LatencyAdd operations/cycle ≈ 0.5 op/cycle => 75 Mflop/s (using 
a clock frequency of 150 MHz)
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High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is similar to developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed

2N-1 operations => ≈ 2/ LatencyAdd operations/cycle ≈ 0.5 op/cycle => 75 Mflop/s (using
a clock frequency of 150 MHz)
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efficiently solve their problem



High Level Synthesis

• A common misunderstanding: 

«as we use some C-like language, developing on FPGA is similar to developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed

2N-1 operations => ≈ 2/ LatencyAdd operations/cycle ≈ 0.5 op/cycle => 100 Mflop/s
(using a typical clock frequency of 200 MHz)
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At this point users say that FPGA is not a good solution to 
efficiently solve their problem

Let’s try to convince them that FPGA can be a good 
solution once they understand that they must change their 
mind as they are using a different technology…
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The Matrix-Vector Multiplication

• In the framework of algorithms for Adaptive Optics (AO) we have been requested to 
efficiently implement on FPGA technology the multiplication between a large matrix 
(8K x 8K single precision floating point elements) and several vectors (8K elements)
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The Matrix-Vector Multiplication

• In the framework of algorithms for Adaptive Optics (AO) we have been requested to 
efficiently implement on FPGA technology the multiplication between a large matrix 
(8K x 8K single precision floating point elements) and several vectors (8K elements)

• Each new vector can be multiplied by the matrix only when the previous matrix vector 
multiplication is finished
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The Matrix-Vector Multiplication

• In the framework of algorithms for Adaptive Optics (AO) we have been requested to 
efficiently implement on FPGA technology the multiplication between a large matrix 
(8K x 8K single precision floating point elements) and several vectors (8K elements)

• Each new vector can be multiplied by the matrix only when the previous matrix vector 
multiplication is finished

• The Matrix-Vector Multiplication (MVM) is the core of the Wavefront Reconstruction 
control algorithm.
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The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;
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The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;

• It’s well known that MVM is limited by the available memory bandwidth; as discussed 
in the paper, the computational speed in the MVM cannot be larger than half of the 
bandwidth between the FPGA and the external memory;
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The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;

• It’s well known that MVM is limited by the available memory bandwidth; as discussed 
in the paper, the computational speed in the MVM cannot be larger than half of the 
bandwidth between the FPGA and the external memory;

• Computing speed = 
#୮ୣ୰ୟ୲୧୭୬ୱ

#େ୷ୡ୪ୣୱ ୲୭ ୡ୭୫୮୳୲ୣ 

ଶ
రొ

ా



ଶ
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The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;

• It’s well known that MVM is limited by the available memory bandwidth; as discussed 
in the paper, the computational speed in the MVM cannot be larger than half of the 
bandwidth between the FPGA and the external memory;

• Our design is targeting a FPGA board with an Intel ARRIA 10 GX1150 FPGA, with 4 
HMC memory banks; the BW toward each bank is 17 GB/s so we know that MVM 
implementation could not sustain more than 34 Gflop/s
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Outline of the presentation
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Coarse-grained spatial parallelism

• As we have 4 external memory banks, it is immediate to think to an implementation 
where 4 equal kernels compute N/4 times the scalar product between a copy of the 
input vector and a row of the matrix; 
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Coarse-grained spatial parallelism

• As we have 4 external memory banks, it is immediate to think to an implementation 
where 4 equal kernels compute N/4 times the scalar product between a copy of the 
input vector and a row of the matrix; 

• the matrix is equally split among the 4 banks, the vector is replicated in each kernel; 
in this way, each kernel computes in parallel the N/4 elements of the result vector;
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Coarse-grained spatial parallelism

• As we have 4 external memory banks, it is immediate to think to an implementation 
where 4 equal kernels compute N/4 times the scalar product between a copy of the 
input vector and a row of the matrix; 

• the matrix is equally split among the 4 banks, the vector is replicated in each kernel;
in this way, each kernel computes in parallel the N/4 elements of the result vector;

• The sketch of the architecture to be implemented is the following
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Pipelined implementation of the scalar product

• The scalar product can be implemented with one pipelined MADD (one multiplier and 
one adder) which iteratively computes the recurrence

si+1 = ai × bi + si i=0, ..., N-1 with s0=0, ai a, bi b.
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Pipelined implementation of the scalar product

• The scalar product can be implemented with one pipelined MADD (one multiplier and 
one adder) which iteratively computes the recurrence

si+1 = ai × bi + si i=0, ..., N-1 with s0=0, ai a, bi b.

• As the computation of the next MADD operation is dependent on the completion of the 
previous operation, a new MADD cannot start until the previous has finished
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Pipelined implementation of the scalar product

• The scalar product can be implemented with one pipelined MADD (one multiplier and 
one adder) which iteratively computes the recurrence

si+1 = ai × bi + si i=0, ..., N-1 with s0=0, ai a, bi b.

• As the computation of the next MADD operation is dependent on the completion of the 
previous operation, a new MADD cannot start until the previous has finished

• Each time we must wait L cycles (the latency of the MADD operator) before starting a 
new MADD operation
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Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L). 
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Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L). 

• Thanks to the commutativity and associativity of the ADD operation, the scalar product 
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ
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Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L). 

• Thanks to the commutativity and associativity of the ADD operation, the scalar product 
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation 
of any other partial scalar product psj, so we can feed the L computations into the 
same pipelined MADD component
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Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L). 

• Thanks to the commutativity and associativity of the ADD operation, the scalar product 
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation 
of any other partial scalar product psj, so we can feed the L computations into the 
same pipelined MADD component

• At each cycle, a different partial scalar product enters the pipeline; when, after L 
cycles, the result exits from the pipeline it is ready to be used for the next MADD
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Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L). 

• Thanks to the commutativity and associativity of the ADD operation, the scalar product 
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation 
of any other partial scalar product psj, so we can feed the L computations into the 
same pipelined MADD component

• At each cycle, a different partial scalar product enters the pipeline; when, after L 
cycles, the result exits from the pipeline it is ready to be used for the next MADD

• After N+L-1 cycles the L psi values have been computed (full utilization of the pipeline)
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Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L). 

• Thanks to the commutativity and associativity of the ADD operation, the scalar product 
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation 
of any other partial scalar product psj, so we can feed the L computations into the 
same pipelined MADD component

• At each cycle, a different partial scalar product enters the pipeline; when, after L 
cycles, the result exits from the pipeline it is ready to be used for the next MADD

• After N+L-1 cycles the L psi values have been computed (full utilization of the pipeline)

• The final result is computed summing the L psi values. This additional sum requires 
O(log(L)) cycles and is negligible when N >> L
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Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained 
parallelism, we can read from the external memory 4 floats at each cycle i.e., when 
fck=150 MHz, we read 2.4 GB/s
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Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained 
parallelism, we can read from the external memory 4 floats at each cycle i.e., when 
fck=150 MHz, we read 2.4 GB/s

• In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit 
the computing performance because it must be less than half of the used memory 
BW. With the fine-grained pipelined scheme and using the coarse-grained spatial 
parallelism, the performance is less than 1.2 Gflop/s
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Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained 
parallelism, we can read from the external memory 4 floats at each cycle i.e., when 
fck=150 MHz, we read 2.4 GB/s

• In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit 
the computing performance because it must be less than half of the used memory 
BW. With the fine-grained pipelined scheme and using the coarse-grained spatial 
parallelism, the performance is less than 1.2 Gflop/s

• To increase the used memory BW we partition each of the L sub-vectors into P smaller 
sub-vectors 𝐢𝐣 and 𝐢𝐣

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ
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Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained 
parallelism, we can read from the external memory 4 floats at each cycle i.e., when 
fck=150 MHz, we read 2.4 GB/s

• In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit 
the computing performance because it must be less than half of the used memory 
BW. With the fine-grained pipelined scheme and using the coarse-grained spatial 
parallelism, the performance is less than 1.2 Gflop/s

• To increase the used memory BW we partition each of the L sub-vectors into P smaller 
sub-vectors 𝐢𝐣 and 𝐢𝐣

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• The LP partial scalar products are all independent: at each cycle, each scalar product 
reads P elements from the matrix (and P from the vector which is permanently stored 
in the local memory)
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Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• P is the fine-grained spatial parallelism. The value of P is set to saturate the memory 
BW, i.e.

4Pfck=MemBW => 
ୣ୫ా

ସౙౡ
(to be rounded at a power of 2)
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Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• P is the fine-grained spatial parallelism. The value of P is set to saturate the memory 
BW, i.e.

4Pfck=MemBW => 
ୣ୫ా

ସౙౡ
(to be rounded at a power of 2)

• With MemBW = 17 GB/s and fck= 150 MHz we get

P = 28 => round to 32

• In each kernel we start, at each clock cycle, 32 MADD operations. 
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Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• Once the LP partial scalar products have been computed (in N/P + L – 1 clock cycles), 
all these values must be summed together
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Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• Once the LP partial scalar products have been computed (in N/P + L – 1 clock cycles), 
all these values must be summed together

• Using PA adders having latency LA, the number of cycles to sum n=LP numbers is 
given by

ୱ୳୫  ୧




୪୭మ ୬

୧ୀଵ


ଶ 
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Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• Once the LP partial scalar products have been computed (in N/P + L – 1 clock cycles), 
all these values must be summed together

• Using PA adders having latency LA, the number of cycles to sum n=LP numbers is 
given by

ୱ୳୫  ୧




୪୭మ ୬

୧ୀଵ


ଶ 

• From previous expression we get the number of cycle to compute a scalar product

ୗ


ଶ 
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Coarse-grained pipelining

• In the operation b = M x a, the result vector b can be computed through

for (l=0; l<N; l++){
load ml from the external memory
compute the LP partial scalar products sijcompute the final result bl = Si,j (sij)}
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Coarse-grained pipelining

• In the operation b = M x a, the result vector b can be computed through

for (l=0; l<N; l++){
load ml from the external memory
compute the LP partial scalar products sijcompute the final result bl = Si,j (sij)}

• as the loop iterations are independent, they can be pipelined with the following 
schedule
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Outline of the presentation
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The MADD operator (with fine grained-spatial 
parallelism)

/*#qp pipeline */

Void MADD(float a1,…a32, float b1,…b32,float &c1,… &c32)
{
c1 += a1*b1;
…
c32 += a32*b32;
}
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The scalar product (fine-grained pipelined and 
spatial parallelism)

count=0;…,count31=31; //init the 32 count vars
/*#qp unroll 32*/
for (i=0; i<(N)/(L*P); i++){

// 1st value
a1 = a[count]; … a32 = a[count31];
b1 = b[count]; … b32 = b[count31];

MADD(a1, …,a32,b1,…,b32,s0_0,…,s0_31);
Inc(count,…,count31);
…

// Lth value
a1 = a[count]; … a32 = a[count31];
b1 = b[count]; … b32 = b[count31];

MADD(a1,…,a32,b1,…,b32,s7_0,…,s7_31);
Inc(count,…,count31);

}
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The sum function

float Sum(float s0_0,..., float s7_31)

{

float result;

result =s0_0+s0_1+...+s0_31+s1_0+...+s7_31; //256 operands

return result;

}
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MVM with corse-grained pipelining

The preamble

qpReadStream(d_in_0,a1,NbElem*sizeof(float));//read vect a

ReadVector(b1, Matrix,row); row++; // read a row of M 

ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);

sum1 = Sum(cr0_0,..., cr0_31);

ReadVector(b2, Matrix, row); row++;

ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);

ReadVector(b3, Matrix, row);  row++;
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MVM with corse-grained pipelining

The main body
for (i=0; i<myNbProducts-6; i+=3) {

Write(dout,sum1,false); //send an element of the result vector

sum2 = Sum(cr0_0,..., cr0_31);

Write(dout,sum2,false);

ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);

sum3 = Sum(cr0_0,..., cr0_31);

Write(dout,sum3,false);

ReadVector(b1, Matrix, row); row++;

ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);

sum1 = Sum(cr0_0,..., cr0_31);

ReadVector(b2, Matrix, row);    row++;

ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);

ReadVector(b3, Matrix, row); row++;}
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MVM with corse-grained pipelining

The postamble

Write(dout,sum1,false);

i++;  // i is the number of written values

sum2 = Sum(cr0_0,..., cr0_31);

Write(dout,sum2,false);

i++;  // i is the number of written values

ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31); 

sum3 = Sum(cr0_0,..., cr0_31);

Write(dout,sum3,i==NbProducts-1);
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The whole design
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Outline of the presentation

55Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions



Performance
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 1 Kernel 2 Kernels 3 Kernels 4 Kernels 

Speed [GFlop/s] 5.3 10.6 15.9 21.0 

ALM 88547  190648 264600  282473 

M20K 500 959 1378 2045 

 



Performance

• The 21 Gflop/s is below the expected limit, fixed by the available memory BW (34 
Gflop/s)

• Going more in depth, we see that the number of cycles needed to transfer data from 
the external memory to the FPGA internal memory is given by

୫ୣ୫ ୫

where Lm= 200 cycles. As N/P in our case is 256, the latency is comparable 
with the transfer time. 

Therefore we see a memory BW = ୡ୩
ସ

ొ

ౌ
ାౣ

ୋ

ୱ
to the 

computing speed of 5.5 Gflop/s, in good agreement with the achieved 
performance (5.3 Gflop/s with one kernel).
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Performance

• In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should 
be able to overlap the latency of the memory read for the transfer of one line of the 
matrix with the actual transfer of the previous line.
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Performance

• In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should 
be able to overlap the latency of the memory read for the transfer of one line of the 
matrix with the actual transfer of the previous line.

• In order to do this, the memory controller (and the HLS engine) should be able to 
support outstanding memory accesses (which was not the case in our environment)
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Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA
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Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to 
efficiently exploit them
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Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to 
efficiently exploit them

• In this case, we used both pipeline and spatial parallelism at the fine-grain and at the 
coarse grain
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Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to 
efficiently exploit them

• In this case, we used both pipeline and spatial parallelism at the fine-grain and at the 
coarse grain

• We exposed our idea that HLS should not abstract us too much from the actual 
architecture, as we should be able to foresee which should be the performance 
achievable and the performance of the actual HLS implementation of a given 
algorithm should be evaluated against this theoretical prediction
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Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to 
efficiently exploit them

• In this case, we used both pipeline and spatial parallelism at the fine-grain and at the 
coarse grain

• We exposed our idea that HLS should not abstract us too much from the actual 
architecture, as we should be able to foresee which should be the performance 
achievable and the performance of the actual HLS implementation of a given 
algorithm should be evaluated against this theoretical prediction

• We discourage as much as possible performance evaluation through comparison with 
other implementations
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• Thank you for your attention

• For any information, feel free to contact me at

paolo.palazzari@enea.it
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