

Alessandro Marongiu, Paolo Palazzari, ENEA, ICT-HPC division

Using High-Level Synthesis to Implement
the
Matrix-Vector Multiplication on FPGA

2

In memory of Alessandro Marongiu

• He was a reference point in all the workplaces where
he worked, both in the public research (ENEA) and in
the private (the Ylichron spin-off, PLDA and Accelize).

• He was one of the main architects of the QuickPlay
HLS flow.

• He worked for more than 20 years on parallel
computing. His main interest has been the
automation of the process to translate a high-level
description of an algorithm into an equivalent,
parallel, lower level description.

3Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Outline of the presentation

4Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions

Outline of the presentation

5Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

6Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side (once you have a flow which transparently
instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe
communication, FIFO and streamed channels, …)

7Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side (once you have a flow which transparently
instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe
communication, FIFO and streamed channels, …)

float ScalarProduct(float a[N], float b[N]) {

float sum = 0;

for (i=0; i<N; i++)

sum += a[i]*b[i];

return sum;}

8Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side (once you have a flow which transparently
instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe
communication, FIFO and streamed channels, …)

float ScalarProduct(float a[N], float b[N]) {

float sum = 0;

for (i=0; i<N; i++)

sum += a[i]*b[i];

return sum;}

9Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

In 5 min (plus ~ 1 hour of compile time)
we obtain a working design which
computes the scalar product

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed

10Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N*LatencyAdd cycles to be executed

- each add is dependent on the result of the previous add;

- we suppose that compiler will be able to overlap the

- reads from the two memory banks (a[i] and b[i])

- the a[i-1]*b[i-1] multiply

- and the sum = sum + result of a[i-2]*b[i-2]

11Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed

2N-1 operations => ≈ 2/ LatencyAdd operations/cycle ≈ 0.5 op/cycle => 75 Mflop/s (using
a clock frequency of 150 MHz)

12Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is similar to developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed

2N-1 operations => ≈ 2/ LatencyAdd operations/cycle ≈ 0.5 op/cycle => 75 Mflop/s (using
a clock frequency of 150 MHz)

13Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

At this point users say that FPGA is not a good solution to
efficiently solve their problem

High Level Synthesis

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is similar to developing on CPU»

This is quite true on the functional side

but it is false when we refer to performance

Previous code would require (at least) N* LatencyAdd cycles to be executed

2N-1 operations => ≈ 2/ LatencyAdd operations/cycle ≈ 0.5 op/cycle => 100 Mflop/s
(using a typical clock frequency of 200 MHz)

14Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

At this point users say that FPGA is not a good solution to
efficiently solve their problem

Let’s try to convince them that FPGA can be a good
solution once they understand that they must change their
mind as they are using a different technology…

Outline of the presentation

15Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions

The Matrix-Vector Multiplication

• In the framework of algorithms for Adaptive Optics (AO) we have been requested to
efficiently implement on FPGA technology the multiplication between a large matrix
(8K x 8K single precision floating point elements) and several vectors (8K elements)

16Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The Matrix-Vector Multiplication

• In the framework of algorithms for Adaptive Optics (AO) we have been requested to
efficiently implement on FPGA technology the multiplication between a large matrix
(8K x 8K single precision floating point elements) and several vectors (8K elements)

• Each new vector can be multiplied by the matrix only when the previous matrix vector
multiplication is finished

17Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The Matrix-Vector Multiplication

• In the framework of algorithms for Adaptive Optics (AO) we have been requested to
efficiently implement on FPGA technology the multiplication between a large matrix
(8K x 8K single precision floating point elements) and several vectors (8K elements)

• Each new vector can be multiplied by the matrix only when the previous matrix vector
multiplication is finished

• The Matrix-Vector Multiplication (MVM) is the core of the Wavefront Reconstruction
control algorithm.

18Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;

19Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;

• It’s well known that MVM is limited by the available memory bandwidth; as discussed
in the paper, the computational speed in the MVM cannot be larger than half of the
bandwidth between the FPGA and the external memory;

20Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

PP1

Diapositiva 20

PP1 Paolo Palazzari; 06/06/2020

The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;

• It’s well known that MVM is limited by the available memory bandwidth; as discussed
in the paper, the computational speed in the MVM cannot be larger than half of the
bandwidth between the FPGA and the external memory;

• Computing speed =
#୮ୣ୰ୟ୲୧୭୬ୱ

#େ୷ୡ୪ୣୱ ୲୭ ୡ୭୫୮୳୲ୣ

ଶ
రొ

ా

ଶ

21Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The Matrix-Vector Multiplication

• Because of its size (256 MB), the matrix must be stored in the external memory;

• It’s well known that MVM is limited by the available memory bandwidth; as discussed
in the paper, the computational speed in the MVM cannot be larger than half of the
bandwidth between the FPGA and the external memory;

• Our design is targeting a FPGA board with an Intel ARRIA 10 GX1150 FPGA, with 4
HMC memory banks; the BW toward each bank is 17 GB/s so we know that MVM
implementation could not sustain more than 34 Gflop/s

22Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Outline of the presentation

23Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions

Coarse-grained spatial parallelism

• As we have 4 external memory banks, it is immediate to think to an implementation
where 4 equal kernels compute N/4 times the scalar product between a copy of the
input vector and a row of the matrix;

24Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Coarse-grained spatial parallelism

• As we have 4 external memory banks, it is immediate to think to an implementation
where 4 equal kernels compute N/4 times the scalar product between a copy of the
input vector and a row of the matrix;

• the matrix is equally split among the 4 banks, the vector is replicated in each kernel;
in this way, each kernel computes in parallel the N/4 elements of the result vector;

25Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Coarse-grained spatial parallelism

• As we have 4 external memory banks, it is immediate to think to an implementation
where 4 equal kernels compute N/4 times the scalar product between a copy of the
input vector and a row of the matrix;

• the matrix is equally split among the 4 banks, the vector is replicated in each kernel;
in this way, each kernel computes in parallel the N/4 elements of the result vector;

• The sketch of the architecture to be implemented is the following

26Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• The scalar product can be implemented with one pipelined MADD (one multiplier and
one adder) which iteratively computes the recurrence

si+1 = ai × bi + si i=0, ..., N-1 with s0=0, ai a, bi b.

27Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• The scalar product can be implemented with one pipelined MADD (one multiplier and
one adder) which iteratively computes the recurrence

si+1 = ai × bi + si i=0, ..., N-1 with s0=0, ai a, bi b.

• As the computation of the next MADD operation is dependent on the completion of the
previous operation, a new MADD cannot start until the previous has finished

28Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• The scalar product can be implemented with one pipelined MADD (one multiplier and
one adder) which iteratively computes the recurrence

si+1 = ai × bi + si i=0, ..., N-1 with s0=0, ai a, bi b.

• As the computation of the next MADD operation is dependent on the completion of the
previous operation, a new MADD cannot start until the previous has finished

• Each time we must wait L cycles (the latency of the MADD operator) before starting a
new MADD operation

29Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L).

30Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L).

• Thanks to the commutativity and associativity of the ADD operation, the scalar product
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

31Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L).

• Thanks to the commutativity and associativity of the ADD operation, the scalar product
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation
of any other partial scalar product psj, so we can feed the L computations into the
same pipelined MADD component

32Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L).

• Thanks to the commutativity and associativity of the ADD operation, the scalar product
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation
of any other partial scalar product psj, so we can feed the L computations into the
same pipelined MADD component

• At each cycle, a different partial scalar product enters the pipeline; when, after L
cycles, the result exits from the pipeline it is ready to be used for the next MADD

33Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L).

• Thanks to the commutativity and associativity of the ADD operation, the scalar product
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation
of any other partial scalar product psj, so we can feed the L computations into the
same pipelined MADD component

• At each cycle, a different partial scalar product enters the pipeline; when, after L
cycles, the result exits from the pipeline it is ready to be used for the next MADD

• After N+L-1 cycles the L psi values have been computed (full utilization of the pipeline)

34Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Pipelined implementation of the scalar product

• Let’s partition the a and b vectors into L equally sized sub-vectors sai and sbi

(i=1,2,…,L).

• Thanks to the commutativity and associativity of the ADD operation, the scalar product
can be written as the sum of the results of L partial scalar products

i
ିଵ
୧ୀ = 𝐢 𝐢

ିଵ
୧ୀ

• The computation of each partial scalar product psi is independent on the computation
of any other partial scalar product psj, so we can feed the L computations into the
same pipelined MADD component

• At each cycle, a different partial scalar product enters the pipeline; when, after L
cycles, the result exits from the pipeline it is ready to be used for the next MADD

• After N+L-1 cycles the L psi values have been computed (full utilization of the pipeline)

• The final result is computed summing the L psi values. This additional sum requires
O(log(L)) cycles and is negligible when N >> L

35Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained
parallelism, we can read from the external memory 4 floats at each cycle i.e., when
fck=150 MHz, we read 2.4 GB/s

36Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained
parallelism, we can read from the external memory 4 floats at each cycle i.e., when
fck=150 MHz, we read 2.4 GB/s

• In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit
the computing performance because it must be less than half of the used memory
BW. With the fine-grained pipelined scheme and using the coarse-grained spatial
parallelism, the performance is less than 1.2 Gflop/s

37Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained
parallelism, we can read from the external memory 4 floats at each cycle i.e., when
fck=150 MHz, we read 2.4 GB/s

• In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit
the computing performance because it must be less than half of the used memory
BW. With the fine-grained pipelined scheme and using the coarse-grained spatial
parallelism, the performance is less than 1.2 Gflop/s

• To increase the used memory BW we partition each of the L sub-vectors into P smaller
sub-vectors 𝐢𝐣 and 𝐢𝐣

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

38Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

• With the fully pipelined computation of the scalar product and the coarse-grained
parallelism, we can read from the external memory 4 floats at each cycle i.e., when
fck=150 MHz, we read 2.4 GB/s

• In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit
the computing performance because it must be less than half of the used memory
BW. With the fine-grained pipelined scheme and using the coarse-grained spatial
parallelism, the performance is less than 1.2 Gflop/s

• To increase the used memory BW we partition each of the L sub-vectors into P smaller
sub-vectors 𝐢𝐣 and 𝐢𝐣

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• The LP partial scalar products are all independent: at each cycle, each scalar product
reads P elements from the matrix (and P from the vector which is permanently stored
in the local memory)

39Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• P is the fine-grained spatial parallelism. The value of P is set to saturate the memory
BW, i.e.

4Pfck=MemBW =>
ୣ୫ా

ସౙౡ
(to be rounded at a power of 2)

40Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• P is the fine-grained spatial parallelism. The value of P is set to saturate the memory
BW, i.e.

4Pfck=MemBW =>
ୣ୫ా

ସౙౡ
(to be rounded at a power of 2)

• With MemBW = 17 GB/s and fck= 150 MHz we get

P = 28 => round to 32

• In each kernel we start, at each clock cycle, 32 MADD operations.

41Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• Once the LP partial scalar products have been computed (in N/P + L – 1 clock cycles),
all these values must be summed together

42Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• Once the LP partial scalar products have been computed (in N/P + L – 1 clock cycles),
all these values must be summed together

• Using PA adders having latency LA, the number of cycles to sum n=LP numbers is
given by

ୱ୳୫ ୧

୪୭మ ୬

୧ୀଵ

ଶ

43Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Fine-grained spatial parallelism

= 𝐢 𝐢
ିଵ
୧ୀ = 𝐢𝐣 𝐢𝐣

ିଵ
୨ୀ

ିଵ
ୀ

• Once the LP partial scalar products have been computed (in N/P + L – 1 clock cycles),
all these values must be summed together

• Using PA adders having latency LA, the number of cycles to sum n=LP numbers is
given by

ୱ୳୫ ୧

୪୭మ ୬

୧ୀଵ

ଶ

• From previous expression we get the number of cycle to compute a scalar product

ୗ

ଶ

44Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Coarse-grained pipelining

• In the operation b = M x a, the result vector b can be computed through

for (l=0; l<N; l++){
load ml from the external memory
compute the LP partial scalar products sijcompute the final result bl = Si,j (sij)}

45Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Coarse-grained pipelining

• In the operation b = M x a, the result vector b can be computed through

for (l=0; l<N; l++){
load ml from the external memory
compute the LP partial scalar products sijcompute the final result bl = Si,j (sij)}

• as the loop iterations are independent, they can be pipelined with the following
schedule

46Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Outline of the presentation

47Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions

The MADD operator (with fine grained-spatial
parallelism)

/*#qp pipeline */

Void MADD(float a1,…a32, float b1,…b32,float &c1,… &c32)
{
c1 += a1*b1;
…
c32 += a32*b32;
}

48Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The scalar product (fine-grained pipelined and
spatial parallelism)

count=0;…,count31=31; //init the 32 count vars
/*#qp unroll 32*/
for (i=0; i<(N)/(L*P); i++){

// 1st value
a1 = a[count]; … a32 = a[count31];
b1 = b[count]; … b32 = b[count31];

MADD(a1, …,a32,b1,…,b32,s0_0,…,s0_31);
Inc(count,…,count31);
…

// Lth value
a1 = a[count]; … a32 = a[count31];
b1 = b[count]; … b32 = b[count31];

MADD(a1,…,a32,b1,…,b32,s7_0,…,s7_31);
Inc(count,…,count31);

}

49Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The sum function

float Sum(float s0_0,..., float s7_31)

{

float result;

result =s0_0+s0_1+...+s0_31+s1_0+...+s7_31; //256 operands

return result;

}

50Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

MVM with corse-grained pipelining

The preamble

qpReadStream(d_in_0,a1,NbElem*sizeof(float));//read vect a

ReadVector(b1, Matrix,row); row++; // read a row of M

ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);

sum1 = Sum(cr0_0,..., cr0_31);

ReadVector(b2, Matrix, row); row++;

ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);

ReadVector(b3, Matrix, row); row++;

51Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

MVM with corse-grained pipelining

The main body
for (i=0; i<myNbProducts-6; i+=3) {

Write(dout,sum1,false); //send an element of the result vector

sum2 = Sum(cr0_0,..., cr0_31);

Write(dout,sum2,false);

ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);

sum3 = Sum(cr0_0,..., cr0_31);

Write(dout,sum3,false);

ReadVector(b1, Matrix, row); row++;

ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);

sum1 = Sum(cr0_0,..., cr0_31);

ReadVector(b2, Matrix, row); row++;

ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);

ReadVector(b3, Matrix, row); row++;}

52Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

MVM with corse-grained pipelining

The postamble

Write(dout,sum1,false);

i++; // i is the number of written values

sum2 = Sum(cr0_0,..., cr0_31);

Write(dout,sum2,false);

i++; // i is the number of written values

ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);

sum3 = Sum(cr0_0,..., cr0_31);

Write(dout,sum3,i==NbProducts-1);

53Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

The whole design

54Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Outline of the presentation

55Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions

Performance

56Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

 1 Kernel 2 Kernels 3 Kernels 4 Kernels

Speed [GFlop/s] 5.3 10.6 15.9 21.0

ALM 88547 190648 264600 282473

M20K 500 959 1378 2045

Performance

• The 21 Gflop/s is below the expected limit, fixed by the available memory BW (34
Gflop/s)

• Going more in depth, we see that the number of cycles needed to transfer data from
the external memory to the FPGA internal memory is given by

୫ୣ୫ ୫

where Lm= 200 cycles. As N/P in our case is 256, the latency is comparable
with the transfer time.

Therefore we see a memory BW = ୡ୩
ସ

ొ

ౌ
ାౣ

ୋ

ୱ
to the

computing speed of 5.5 Gflop/s, in good agreement with the achieved
performance (5.3 Gflop/s with one kernel).

57Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Performance

• In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should
be able to overlap the latency of the memory read for the transfer of one line of the
matrix with the actual transfer of the previous line.

58Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Performance

• In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should
be able to overlap the latency of the memory read for the transfer of one line of the
matrix with the actual transfer of the previous line.

• In order to do this, the memory controller (and the HLS engine) should be able to
support outstanding memory accesses (which was not the case in our environment)

59Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Performance

• In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should
be able to overlap the latency of the memory read for the transfer of one line of the
matrix with the actual transfer of the previous line.

• In order to do this, the memory controller (and the HLS engine) should be able to
support outstanding memory accesses (which was not the case in our environment)

60Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Outline of the presentation

61Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Some preliminary considerations on how to use an HLS flow

• The problem to be solved

• Exploitation of spatial and pipeline parallelism at the different granularities

• Few details on the implementation through the QuickPlay HLS flow

• Performance evaluation

• Conclusions

Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

62Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to
efficiently exploit them

63Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to
efficiently exploit them

• In this case, we used both pipeline and spatial parallelism at the fine-grain and at the
coarse grain

64Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to
efficiently exploit them

• In this case, we used both pipeline and spatial parallelism at the fine-grain and at the
coarse grain

• We exposed our idea that HLS should not abstract us too much from the actual
architecture, as we should be able to foresee which should be the performance
achievable and the performance of the actual HLS implementation of a given
algorithm should be evaluated against this theoretical prediction

65Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

• We showed the necessity to be aware of the different kind of parallelism in order to
efficiently exploit them

• In this case, we used both pipeline and spatial parallelism at the fine-grain and at the
coarse grain

• We exposed our idea that HLS should not abstract us too much from the actual
architecture, as we should be able to foresee which should be the performance
achievable and the performance of the actual HLS implementation of a given
algorithm should be evaluated against this theoretical prediction

• We discourage as much as possible performance evaluation through comparison with
other implementations

66Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

• Thank you for your attention

• For any information, feel free to contact me at

paolo.palazzari@enea.it

67Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020 – paolo.palazzari@enea.it

