

ISC 2020 DIGITAL JUNE 22-25

#ISC20

Using High-Level Synthesis to Implement the Matrix-Vector Multiplication on FPGA

Alessandro Marongiu, Paolo Palazzari, ENEA, ICT-HPC division

In memory of Alessandro Marongiu

- He was a reference point in all the workplaces where he worked, both in the public research (ENEA) and in the private (the Ylichron spin-off, PLDA and Accelize).
- He was one of the main architects of the QuickPlay HLS flow.
- He worked for more than 20 years on parallel computing. His main interest has been the automation of the process to translate a high-level description of an algorithm into an equivalent, parallel, lower level description.

Outline of the presentation

- Some preliminary considerations on how to use an HLS flow
- The problem to be solved
- Exploitation of spatial and pipeline parallelism at the different granularities
- Few details on the implementation through the QuickPlay HLS flow
- Performance evaluation
- Conclusions

Outline of the presentation

- Some preliminary considerations on how to use an HLS flow
- The problem to be solved
- Exploitation of spatial and pipeline parallelism at the different granularities
- Few details on the implementation through the QuickPlay HLS flow
- Performance evaluation
- Conclusions

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite **true** on the **functional** side (once you have a flow which transparently instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe communication, FIFO and streamed channels, ...)

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite **true** on the **functional** side (once you have a flow which transparently instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe communication, FIFO and streamed channels, ...)

```
float ScalarProduct(float a[N], float b[N]) {
float sum = 0;
for (i=0; i<N; i++)
   sum += a[i]*b[i];
return sum;}</pre>
```


• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite **true** on the **functional** side (once you have a flow which transparently instantiates all the necessary IPs – memory controller, clock and reset generator, PCIe communication, FIFO and streamed channels, ...)

```
float ScalarProduct(float a[N], float b[N]) {
float sum = 0;
for (i=0; i<N; i++)
    sum += a[i]*b[i];
return sum;}
</pre>
```


• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite **true** on the **functional** side but it is **false** when we refer to **performance**

Previous code would require (at least) N* Latency_{Add} cycles to be executed

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite **true** on the **functional** side but it is **false** when we refer to **performance**

Previous code would require (at least) N*Latency_{Add} cycles to be executed

- each add is dependent on the result of the previous add;
- we suppose that compiler will be able to overlap the
 - reads from the two memory banks (a[i] and b[i])
 - the a[i-1]*b[i-1] multiply
 - and the sum = sum + result of a[i-2]*b[i-2]

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is like developing on CPU»

This is quite **true** on the **functional** side but it is **false** when we refer to **performance**

Previous code would require (at least) N* Latency_{Add} cycles to be executed

2N-1 operations => \approx **2/ Latency**_{Add} operations/cycle \approx 0.5 op/cycle => **75 Mflop/s** (using a clock frequency of 150 MHz)

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is similar to developing on CPU»

This is quite **true** on the **functional** side but it is **false** when we refer to **performance** At this point users say that FPGA is not a good solution to Fefficiently solve their problem encyAdd cycles to be executed

2N-1 operations => ≈ 2/ Latency_{Add} operations/cycle ≈ 0.5 op/cycle => 75 Mflop/s (using a clock frequency of 150 MHz)

• A common misunderstanding:

«as we use some C-like language, developing on FPGA is similar to developing on CPU»

This is quite true on the functional side but it is false when we refer to performance. At this point users say that FPGA is not a good solution to refficiently solve their problem tency add cycles to be executed

Let's try to convince them that FPGA can be a good solution once they understand that they must change their mind as they are using a different technology...

Outline of the presentation

- Some preliminary considerations on how to use an HLS flow
- The problem to be solved
- Exploitation of spatial and pipeline parallelism at the different granularities
- Few details on the implementation through the QuickPlay HLS flow
- Performance evaluation
- Conclusions

 In the framework of algorithms for Adaptive Optics (AO) we have been requested to efficiently implement on FPGA technology the multiplication between a large matrix (8K x 8K single precision floating point elements) and several vectors (8K elements)

- In the framework of algorithms for Adaptive Optics (AO) we have been requested to efficiently implement on FPGA technology the multiplication between a large matrix (8K x 8K single precision floating point elements) and several vectors (8K elements)
- Each new vector can be multiplied by the matrix only when the previous matrix vector multiplication is finished

- In the framework of algorithms for Adaptive Optics (AO) we have been requested to efficiently implement on FPGA technology the multiplication between a large matrix (8K x 8K single precision floating point elements) and several vectors (8K elements)
- Each new vector can be multiplied by the matrix only when the previous matrix vector multiplication is finished
- The Matrix-Vector Multiplication (MVM) is the core of the Wavefront Reconstruction control algorithm.

• Because of its size (256 MB), the matrix must be stored in the external memory;

- Because of its size (256 MB), the matrix must be stored in the external memory;
- It's well known that MVM is limited by the available memory bandwidth; as discussed in the paper, the computational speed in the MVM cannot be larger than **half of the bandwidth** between the FPGA and the external memory;

Diapositiva 20

Paolo Palazzari; 06/06/2020

- Because of its size (256 MB), the matrix must be stored in the external memory;
- It's well known that MVM is limited by the available memory bandwidth; as discussed in the paper, the computational speed in the MVM cannot be larger than **half of the bandwidth** between the FPGA and the external memory;

• Computing speed =
$$\frac{\text{#Operations}}{\text{#Cycles to compute MVM}} = \frac{2N}{\frac{4N}{BW}} = \frac{BW}{2}$$

- Because of its size (256 MB), the matrix must be stored in the external memory;
- It's well known that MVM is limited by the available memory bandwidth; as discussed in the paper, the computational speed in the MVM cannot be larger than **half of the bandwidth** between the FPGA and the external memory;
- Our design is targeting a FPGA board with an Intel ARRIA 10 GX1150 FPGA, with 4 HMC memory banks; the BW toward each bank is 17 GB/s so we know that MVM implementation could not sustain more than **34 Gflop/s**

Outline of the presentation

- Some preliminary considerations on how to use an HLS flow
- The problem to be solved
- Exploitation of spatial and pipeline parallelism at the different granularities
- Few details on the implementation through the QuickPlay HLS flow
- Performance evaluation
- Conclusions

Coarse-grained spatial parallelism

• As we have 4 external memory banks, it is immediate to think to an implementation where 4 equal kernels compute N/4 times the scalar product between a copy of the input vector and a row of the matrix;

Coarse-grained spatial parallelism

- As we have 4 external memory banks, it is immediate to think to an implementation where 4 equal kernels compute N/4 times the scalar product between a copy of the input vector and a row of the matrix;
- the matrix is equally split among the 4 banks, the vector is replicated in each kernel; in this way, each kernel computes in parallel the N/4 elements of the result vector;

Coarse-grained spatial parallelism

- As we have 4 external memory banks, it is immediate to think to an implementation where 4 equal kernels compute N/4 times the scalar product between a copy of the input vector and a row of the matrix;
- the matrix is equally split among the 4 banks, the vector is replicated in each kernel; in this way, each kernel computes in parallel the N/4 elements of the result vector;
- The sketch of the architecture to be implemented is the following

• The scalar product can be implemented with one pipelined MADD (one multiplier and one adder) which iteratively computes the recurrence

 $s_{i+1} = a_i \times b_i + s_i$ i=0, ..., N-1 with $s_0=0$, $a_i \in a$, $b_i \in b$.

• The scalar product can be implemented with one pipelined MADD (one multiplier and one adder) which iteratively computes the recurrence

 $s_{i+1} = a_i \times b_i + s_i$ i=0, ..., N-1 with $s_0=0$, $a_i \in a$, $b_i \in b$.

• As the computation of the next MADD operation is dependent on the completion of the previous operation, a new MADD cannot start until the previous has finished

• The scalar product can be implemented with one pipelined MADD (one multiplier and one adder) which iteratively computes the recurrence

 $s_{i+1} = a_i \times b_i + s_i$ i=0, ..., N-1 with $s_0=0$, $a_i \in a$, $b_i \in b$.

- As the computation of the next MADD operation is dependent on the completion of the previous operation, a new MADD cannot start until the previous has finished
- Each time we must wait L cycles (the latency of the MADD operator) before starting a new MADD operation

Let's partition the a and b vectors into L equally sized sub-vectors sa_i and sb_i (i=1,2,...,L).

- Let's partition the a and b vectors into L equally sized sub-vectors sa_i and sb_i (i=1,2,...,L).
- Thanks to the commutativity and associativity of the ADD operation, the scalar product can be written as the sum of the results of L partial scalar products

- Let's partition the **a** and **b** vectors into L equally sized sub-vectors sa_i and sb_i (i=1,2,...,L).
- Thanks to the commutativity and associativity of the ADD operation, the scalar product can be written as the sum of the results of L partial scalar products

 $s = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} ps_i \texttt{=} \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i)$

 The computation of each partial scalar product ps_i is independent on the computation of any other partial scalar product ps_j, so we can feed the L computations into the same pipelined MADD component

- Let's partition the a and b vectors into L equally sized sub-vectors sa_i and sb_i (i=1,2,...,L).
- Thanks to the commutativity and associativity of the ADD operation, the scalar product can be written as the sum of the results of L partial scalar products

- The computation of each partial scalar product ps_i is independent on the computation of any other partial scalar product ps_j, so we can feed the L computations into the same pipelined MADD component
- At each cycle, a different partial scalar product enters the pipeline; when, after L cycles, the result exits from the pipeline it is ready to be used for the next MADD

- Let's partition the a and b vectors into L equally sized sub-vectors sa_i and sb_i (i=1,2,...,L).
- Thanks to the commutativity and associativity of the ADD operation, the scalar product can be written as the sum of the results of L partial scalar products

- The computation of each partial scalar product ps_i is independent on the computation of any other partial scalar product ps_j, so we can feed the L computations into the same pipelined MADD component
- At each cycle, a different partial scalar product enters the pipeline; when, after L cycles, the result exits from the pipeline it is ready to be used for the next MADD
- After N+L-1 cycles the L ps_i values have been computed (full utilization of the pipeline)

- Let's partition the a and b vectors into L equally sized sub-vectors sa_i and sb_i (i=1,2,...,L).
- Thanks to the commutativity and associativity of the ADD operation, the scalar product can be written as the sum of the results of L partial scalar products

- The computation of each partial scalar product ps_i is independent on the computation of any other partial scalar product ps_j, so we can feed the L computations into the same pipelined MADD component
- At each cycle, a different partial scalar product enters the pipeline; when, after L cycles, the result exits from the pipeline it is ready to be used for the next MADD
- After N+L-1 cycles the L ps_i values have been computed (full utilization of the pipeline)
- The final result is computed summing the L ps_i values. This additional sum requires O(log(L)) cycles and is negligible when N >> L

 With the fully pipelined computation of the scalar product and the coarse-grained parallelism, we can read from the external memory 4 floats at each cycle i.e., when f_{ck}=150 MHz, we read 2.4 GB/s

- With the fully pipelined computation of the scalar product and the coarse-grained parallelism, we can read from the external memory 4 floats at each cycle i.e., when f_{ck}=150 MHz, we read 2.4 GB/s
- In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit the computing performance because it must be less than half of the used memory BW. With the fine-grained pipelined scheme and using the coarse-grained spatial parallelism, the performance is less than 1.2 Gflop/s

- With the fully pipelined computation of the scalar product and the coarse-grained parallelism, we can read from the external memory 4 floats at each cycle i.e., when f_{ck}=150 MHz, we read 2.4 GB/s
- In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit the computing performance because it must be less than half of the used memory BW. With the fine-grained pipelined scheme and using the coarse-grained spatial parallelism, the performance is less than 1.2 Gflop/s
- To increase the used memory BW we partition each of the L sub-vectors into P smaller sub-vectors ssa_{ij} and ssb_{ij}

$$\mathbf{s} = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{P-1} (\mathbf{s} \mathbf{s} \mathbf{a}_{ij} \cdot \mathbf{s} \mathbf{s} \mathbf{b}_{ij})$$

- With the fully pipelined computation of the scalar product and the coarse-grained parallelism, we can read from the external memory 4 floats at each cycle i.e., when f_{ck}=150 MHz, we read 2.4 GB/s
- In this way we waste a lot of the available memory BW, which is 68 GB/s, and we limit the computing performance because it must be less than half of the used memory BW. With the fine-grained pipelined scheme and using the coarse-grained spatial parallelism, the performance is less than 1.2 Gflop/s
- To increase the used memory BW we partition each of the L sub-vectors into P smaller sub-vectors ssa_{ij} and ssb_{ij}

$$\mathbf{s} = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{P-1} (\mathbf{s} \mathbf{s} \mathbf{a}_{ij} \cdot \mathbf{s} \mathbf{s} \mathbf{b}_{ij})$$

• The LP partial scalar products are all independent: at each cycle, each scalar product reads P elements from the matrix (and P from the vector which is permanently stored in the local memory)

$$\mathbf{s} = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{P-1} (\mathbf{s} \mathbf{s} \mathbf{a}_{ij} \cdot \mathbf{s} \mathbf{s} \mathbf{b}_{ij})$$

• P is the fine-grained spatial parallelism. The value of P is set to saturate the memory BW, i.e.

 $4Pf_{ck}=Mem_{BW} \Rightarrow P = \frac{Mem_{BW}}{4f_{ck}}$ (to be rounded at a power of 2)

$$\mathbf{s} = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{P-1} (\mathbf{s} \mathbf{s} \mathbf{a}_{ij} \cdot \mathbf{s} \mathbf{s} \mathbf{b}_{ij})$$

• P is the fine-grained spatial parallelism. The value of P is set to saturate the memory BW, i.e.

 $4Pf_{ck}=Mem_{BW} \Rightarrow P = \frac{Mem_{BW}}{4f_{ck}}$ (to be rounded at a power of 2)

- With Mem_{BW} = 17 GB/s and f_{ck} = 150 MHz we get **P** = 28 => round to **32**
- In each kernel we start, at each clock cycle, 32 MADD operations.

$$\mathbf{s} = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{P-1} (\mathbf{s} \mathbf{s} \mathbf{a}_{ij} \cdot \mathbf{s} \mathbf{s} \mathbf{b}_{ij})$$

 Once the LP partial scalar products have been computed (in N/P + L – 1 clock cycles), all these values must be summed together

$$\mathbf{s} = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{P-1} (\mathbf{s} \mathbf{s} \mathbf{a}_{ij} \cdot \mathbf{s} \mathbf{s} \mathbf{b}_{ij})$$

- Once the LP partial scalar products have been computed (in N/P + L 1 clock cycles), all these values must be summed together
- Using P_A adders having latency L_A, the number of cycles to sum n=LP numbers is given by

$$\mathrm{NCycles}_{\mathrm{sum}}(\mathrm{P}_{\mathrm{A}}) = \sum_{i=1}^{\lceil \log_2(n) \rceil} \left(\left[\frac{n}{2^i} \frac{1}{\mathrm{P}_{\mathrm{A}}} \right] + \mathrm{L}_{\mathrm{A}} \right) \approx \frac{n}{\mathrm{P}_{\mathrm{A}}} + \lceil \log_2(n) \rceil \mathrm{L}_{\mathrm{A}}$$

$$\mathbf{s} = \mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{L-1} (\mathbf{s} \mathbf{a}_i \cdot \mathbf{s} \mathbf{b}_i) = \sum_{i=0}^{L-1} \sum_{j=0}^{P-1} (\mathbf{s} \mathbf{s} \mathbf{a}_{ij} \cdot \mathbf{s} \mathbf{s} \mathbf{b}_{ij})$$

- Once the LP partial scalar products have been computed (in N/P + L 1 clock cycles), all these values must be summed together
- Using P_A adders having latency L_A, the number of cycles to sum n=LP numbers is given by

$$\mathrm{NCycles}_{\mathrm{sum}}(\mathrm{P}_{\mathrm{A}}) = \sum_{i=1}^{\lceil \log_2(n) \rceil} \left(\left[\frac{n}{2^i} \frac{1}{\mathrm{P}_{\mathrm{A}}} \right] + \mathrm{L}_{\mathrm{A}} \right) \approx \frac{n}{\mathrm{P}_{\mathrm{A}}} + \lceil \log_2(n) \rceil \mathrm{L}_{\mathrm{A}}$$

• From previous expression we get the number of cycle to compute a scalar product $NCycles_{SP} \approx \frac{N}{P} + L + \frac{LP}{P_A} + \lceil \log_2(LP) \rceil L_A$

Using HLS to Implement the MVM on FPGA – ISC 2020, June 24th, 2020

44

Coarse-grained pipelining

• In the operation $\mathbf{b} = \mathbf{M} \times \mathbf{a}$, the result vector \mathbf{b} can be computed through

```
for (l=0; l<N; l++) {
load \mathbf{m}_1 from the external memory
compute the LP partial scalar products s_{ij}
compute the final result b_1 = \Sigma_{i,j} (s_{ij})
```


Coarse-grained pipelining

• In the operation $\mathbf{b} = \mathbf{M} \times \mathbf{a}$, the result vector \mathbf{b} can be computed through

```
for (l=0; l<N; l++) { load \mathbf{m}_1 from the external memory compute the LP partial scalar products s_{ij} compute the final result b_1 = \Sigma_{i,j} (s_{ij}) }
```

• as the loop iterations are independent, they can be pipelined with the following schedule

Outline of the presentation

- Some preliminary considerations on how to use an HLS flow
- The problem to be solved
- Exploitation of spatial and pipeline parallelism at the different granularities
- Few details on the implementation through the QuickPlay HLS flow
- Performance evaluation
- Conclusions

The MADD operator (with fine grained-spatial parallelism)

The scalar product (fine-grained pipelined and spatial parallelism)

```
count=0;...,count31=31; //init the 32 count vars
/*#qp unroll 32*/
for (i=0; i<(N)/(L*P); i++) {
    // 1<sup>st</sup> value
    a1 = a[count]; ... a32 = a[count31];
    b1 = b[count]; ... b32 = b[count31];
    MADD(a1, ...,a32,b1,...,b32,s0_0,...,s0_31);
    Inc(count,...,count31);
    ...
    // L<sup>th</sup> value
    a1 = a[count]; ... a32 = a[count31];
    b1 = b[count]; ... b32 = b[count31];
    mADD(a1,...,a32,b1,...,b32,s7_0,...,s7_31);
    Inc(count,...,count31);
}
```


The sum function

```
float Sum(float s0_0,..., float s7_31)
{
    float result;
    result;
```

```
result =s0_0+s0_1+...+s0_31+s1_0+...+s7_31; //256 operands return result;
```


}

MVM with corse-grained pipelining

The preamble

qpReadStream(d_in_0,a1,NbElem*sizeof(float));//read vect a

```
ReadVector(b1, Matrix,row); row++; // read a row of M
ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);
sum1 = Sum(cr0_0,..., cr0_31);
ReadVector(b2, Matrix, row); row++;
ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);
ReadVector(b3, Matrix, row); row++;
```


MVM with corse-grained pipelining

The main body

for (i=0; i<myNbProducts-6; i+=3) {
 Write(dout,sum1,false); //send an element of the result vector
 sum2 = Sum(cr0_0,..., cr0_31);
 Write(dout,sum2,false);
 ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);
 sum3 = Sum(cr0_0,..., cr0_31);
 Write(dout,sum3,false);
 ReadVector(b1, Matrix, row); row++;
 ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);
 sum1 = Sum(cr0_0,..., cr0_31);
 ReadVector(b2, Matrix, row); row++;
 ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);
 ReadVector(b3, Matrix, row); row++;}</pre>

MVM with corse-grained pipelining

The postamble

Write(dout,sum1,false); i++; // i is the number of written values sum2 = Sum(cr0_0,..., cr0_31); Write(dout,sum2,false); i++; // i is the number of written values ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31); sum3 = Sum(cr0_0,..., cr0_31); Write(dout,sum3,i==NbProducts-1);

The whole design

Outline of the presentation

- Some preliminary considerations on how to use an HLS flow
- The problem to be solved
- Exploitation of spatial and pipeline parallelism at the different granularities
- Few details on the implementation through the QuickPlay HLS flow
- Performance evaluation
- Conclusions

	1 Kernel	2 Kernels	3 Kernels	4 Kernels
Speed [GFlop/s]	5.3	10.6	15.9	21.0
ALM	88547	190648	264600	282473
M20K	500	959	1378	2045

- The 21 Gflop/s is below the expected limit, fixed by the available memory BW (34 Gflop/s)
- Going more in depth, we see that the number of cycles needed to transfer data from the external memory to the FPGA internal memory is given by

$$N_{mem} = \frac{N}{P} + L_m$$

where L_m = 200 cycles. As N/P in our case is 256, the latency is comparable with the transfer time.

Therefore we see a memory BW = $f_{ck} \frac{4N}{\frac{N}{p}+L_m} \approx 11 \frac{GB}{s}$ which corresponds to the computing speed of 5.5 Gflop/s, in good agreement with the achieved performance (5.3 Gflop/s with one kernel).

• In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should be able to overlap the latency of the memory read for the transfer of one line of the matrix with the actual transfer of the previous line.

- In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should be able to overlap the latency of the memory read for the transfer of one line of the matrix with the actual transfer of the previous line.
- In order to do this, the memory controller (and the HLS engine) should be able to support outstanding memory accesses (which was not the case in our environment)

- In order to achieve the expected performance (8.5 Gflop/s for each kernel), we should be able to overlap the latency of the memory read for the transfer of one line of the matrix with the actual transfer of the previous line.
- In order to do this, the memory controller (and the HLS engine) should be able to support outstanding memory accesses (which was not the case in our environment)

Outline of the presentation

- Some preliminary considerations on how to use an HLS flow
- The problem to be solved
- Exploitation of spatial and pipeline parallelism at the different granularities
- Few details on the implementation through the QuickPlay HLS flow
- Performance evaluation
- Conclusions

• We discussed the use of an HLS tool to implement the MVM algorithm on FPGA

- We discussed the use of an HLS tool to implement the MVM algorithm on FPGA
- We showed the necessity to be aware of the different kind of parallelism in order to efficiently exploit them

- We discussed the use of an HLS tool to implement the MVM algorithm on FPGA
- We showed the necessity to be aware of the different kind of parallelism in order to efficiently exploit them
- In this case, we used both pipeline and spatial parallelism at the fine-grain and at the coarse grain

- We discussed the use of an HLS tool to implement the MVM algorithm on FPGA
- We showed the necessity to be aware of the different kind of parallelism in order to efficiently exploit them
- In this case, we used both pipeline and spatial parallelism at the fine-grain and at the coarse grain
- We exposed our idea that HLS should not abstract us too much from the actual architecture, as we should be able to foresee which should be the performance achievable and the performance of the actual HLS implementation of a given algorithm should be evaluated against this theoretical prediction

- We discussed the use of an HLS tool to implement the MVM algorithm on FPGA
- We showed the necessity to be aware of the different kind of parallelism in order to efficiently exploit them
- In this case, we used both pipeline and spatial parallelism at the fine-grain and at the coarse grain
- We exposed our idea that HLS should not abstract us too much from the actual architecture, as we should be able to foresee which should be the performance achievable and the performance of the actual HLS implementation of a given algorithm should be evaluated against this theoretical prediction
- We discourage as much as possible performance evaluation through comparison with other implementations

- Thank you for your attention
- For any information, feel free to contact me at

paolo.palazzari@enea.it

SPONSORS

Follow us on Twitter at #ISC20 !

ISC 2020 DIGITAL MEDIA SPONSORS

Follow us on Twitter at #ISC20 !