
1

Using High-Level Synthesis to Implement the
Matrix-Vector Multiplication on FPGA

Alessandro Marongiu, Paolo Palazzari

ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic
Development

C.R. ENEA Casaccia, Rome – Italy

Abstract. This work presents how to implement the Matrix-Vector Multiplica-
tion (MVM) onto FPGA through the QuickPlay High-Level Synthesis flow.
The motivations arise from the Adaptive Optics field, where the MVM is the
core of the real-time control algorithm which controls the mirrors of a telescope
to compensate for the effects of the atmospheric turbulence. The proposed im-
plementation of the MVM exploits four different levels of parallelism: spatial
and pipeline parallelism are used both at the fine (scalar instructions) and at the
coarse (vector instructions) levels. To characterize the architecture being devel-
oped, a performance model has been developed and validated through the actual
results obtained from runs on a prototype board based on the Intel ARRIA10
FPGA. Some details are given to describe how the algorithm has been imple-
mented using the QuickPlay HLS flow. Performance results are presented, in
terms of sustained computational speed and resources used in the hardware im-
plementation.

1 Introduction

In the framework of the research project Green Flash [1], we developed the work
presented in this paper, aimed at efficiently implementing the Matrix-Vector Multipli-
cation (MVM) on the FPGA technology. As discussed in [2], [3], [4] and [5], in
Adaptive Optics (AO) the effect of the atmospheric turbulence is compensated using
the mobile mirrors in the telescope, which are moved according to a given real-time
control algorithm. The dominating part of such an algorithm, see technical annex of
the project [1], is the execution of two MVMs, namely sk*=Mvk and wk=Rsk

pol.
In this paper we illustrate how we used QuickPlay [6], a High-Level Synthesis

(HLS) design flow, to efficiently implement the MVM on FPGA. Representing one of
the Level-2 BLAS functions [7], MVM is the basis for many algebraic computations
and it is fundamental in many application domains. We underline that we see the pre-
sented work as a template of the methodology to be adopted when using HLS.

We start describing the problem to be solved, together with the constraints imposed
by the challenges on the architecture to be implemented. Next, we present the formu-
lation of the solution, explaining how parallelism should be exploited to obtain an
efficient implementation. The implementation we propose in this paper uses four

2

levels of parallelism: as the MVM is a collection of many independent scalar prod-
ucts, we introduce pipeline and spatial parallelism both at the coarse level (paralleliza-
tion among different scalar products) and at the fine level (parallelization within the
computation of one scalar product). A performance model is derived to quantify the
performance achievable through the proposed implementation: this phase is crucial to
validate the performance of the HLS. When using HLS, it is crucial the preliminary
determination of what can be achieved, checking after the synthesis that the results
produced by the automated synthesis process comply with expectations: in lack of this
modeling phase, we should rely only on comparisons with other implementations to
(indirectly) evaluate the implementation produced by HLS. In this paper, the empha-
sis is put mainly on the evaluation of the quality of the implementation derived from
the HLS flow, as we are not trying to assess the superiority of a given technology
against another: discussing FPGA vs GPU is not the aim of this paper. For this reason,
we put much effort into the modeling of the performance which can be theoretically
achieved, to have an absolute criterion to evaluate the quality of the FPGA implemen-
tation: the closer is the performance to the theoretical forecast, the better it is.

The document is concluded with the presentation of the results, in terms of perfor-
mance achieved in actual runs (GFlop/s) and resource used (LUT, memory blocks,
DSP).

2 Related Work

Due to its relevance in many domains, the implementation of the MVM has been
widely investigated; in particular, how to efficiently implement the operation on the
FPGA technology has been investigated. In [8] the authors present a comparison of
the implementation of the MVM, the gaxpy operation, on FPGA, GPU and CPU.
They describe the FPGA implementation, organizing the internal dual-ported memo-
ries as V row banks which store the rows of the matrix; each of these banks is com-
posed by B banks which store in an interleaved way the rows mapped into the row
bank; thanks to this organization, at each clock cycle VxB elements can be read and
written from and to the memory. These elements can feed Q≤V pipelined modules,
each one computing a B-size scalar product. The work is further improved in [9],
where the management of large external memory is added. In [10], [11] the FPGA
implementation of the BLAS operations is discussed, with a special focus on the im-
plementation of the reduction circuit needed in the accumulation involved in each
BLAS operation. The authors in [12] report the FPGA implementation of the MVM
and matrix-matrix product with a detailed analysis of the error propagation in the
accumulation phase. Considering that the MVM problem is I/O bound and there is no
benefit in increasing the parallelism beyond the I/O saturation, the authors propose to
use some logic to implement the group-alignment based floating-point summation
[13], which increases the numerical accuracy of the computation. The FPGA imple-
mentation of the BLAS is reported in [14]. In this work, while relying on the OpenCL
framework [15] for the actual FPGA implementation, the authors give a detailed per-
formance model to drive the selection of the parameters determining the tradeoff be-

3

tween speed and resource performance. Using the selected parameters, some code
generators are activated to generate the OpenCL description of the optimized BLAS
routine. The reader interested in the implementation of the MVM on GPU technology
can refer to [16], which presents an analysis of the MVM implementation on GPU,
together with a detailed performance model.

3 Problem Definition

The MVM is the basic operation to perform the Wavefront Reconstruction control
algorithm; its usage is well known in the Adaptive Optics community and dates back
to the late ’80s [17] and has been successively improved many times [2]. In our im-
plementation, using single-precision floating-point arithmetic, we have to multiply
two matrices M[Nmeans,Nrec] and R[Nrec,Nmeans] with the vectors vk[Nrec], sk[Nmeans],
being Nmeans=9232 and Nrec=6316.

Due to their size, M and R are stored in external memory. M and R do not change
for a quite long time and must be multiplied many times by vectors vk and sk; pro-
cessing step (k+1) can start only when the kth step has finished.

Once the bandwidth BW to access the external memory is fixed, an upper bound
for the speed of the computation is determined. To perform the MVM, the matrix
must be read from the memory; when we refer to a generic matrix M[n,m] and we
indicate with D the floating-point data size expressed in bytes (in single-precision
D=4, in double-precision D=8), the matrix size is Ms=nmD [Bytes] and the time to
read the matrix from external memory is

 tR=nmD/BW. (1)

As the number of operations performed in the MVM is nops=2nm and the overall
computing time cannot be smaller than tR, the computing speed SC cannot be larger
than nops/tR i.e.,

 Sେ ≤
୬౥౦౩

୲౎
=

ଶ୬୫
౤ౣీ

ా౓

=
ଶ୆୛

ୈ
. (2)

Using single-precision floating-point, D=4, the speed can never be greater than half
of the available memory BW.

In the following sections, we will analyze how the MVM should be implemented
to be as close as possible to the previous limit.

4 Guidelines for Implementation: Exploiting Coarse-Grained
Parallelism

The MVM b = M x a (M[n,m], a[m], b[n]) is the collection of n independent sca-
lar products between m-sized vectors i.e.,

 bi = mi ∙ a i=0,1,…,n-1; bi ∈ ℝ; mi ∈ ℝ m; a ∈ ℝ m . (3)

4

Let’s implement, in an optimized way, a kernel SP which performs a certain num-
ber of scalar products between one vector a and several vectors read from the external
memory; if we have p external memory banks, we can partition1 M in p equal parts
Mp, each containing n/p different matrix lines mp,i with p = 0,1,..., p-1 and
i=0,1,...,n/p-1 (each line is an m-sized vector), storing each Mp into a different
memory bank. We instantiate p replicas of the SP scalar product kernel and we dis-
tribute a copy of the a vector, to be read once, to all the SP kernels. Each SP kernel
computes a portion bp of the b result vector. The final vector is obtained properly
merging (i.e., concatenating) all the bp sub-vectors.

The degree of parallelism p is selected to make (nearly) equal the BW requirement
with the BW available toward the external memory (BWExtMem); let’s indicate with
BWreq the memory bandwidth requested by the SP kernel (BWreq will be quantified in
the following).

The memory bandwidth required by the p SP kernels is p×BWreq and must be large
enough to saturate BWExtMem i.e., BWExtMem≈ p×BWreq which gives

 p ≈ BWExtMem/BWreq. (4)

Fig. 1. coarse-grained parallel architecture to implement the MVM

In the following, when giving numerical examples, we use the parameters charac-
terizing the XComp board, developed by MicroGate and equipped with an Intel
ARRIA 10 GX1150 FPGA [18]. Referring to the previous example and to the four
Hyper Memory Cube (HMC) banks present in the XComp board (each HMC bank
has a peak BW of 17 GB/s), BWExtMem=68 GB/s. In our implementation of the SP
kernel BWreq = 19.2 GB/s, so the degree of parallelism that can be efficiently support-
ed is given by eq. (4) which yields p≈4. Therefore, four SP kernels can be instantiat-
ed, each one accessing a different HMC bank.

1 Let’s assume n to be multiple of p; should this not being the case, (n%p) sets would have

⌊n/𝑝⌋ + 1 lines and the remaining sets would contain ⌊n/p⌋ lines

5

5 The Scalar Product: Basic Pipelined Implementation

As a consequence of the discussion of the previous section, we recognize the scalar
product as our coarse grain unit of parallelism. The scalar product can be implement-
ed with one pipelined MADD (one multiplier and one adder) which iteratively com-
putes the recurrence

 si+1 = ai × bi + si i=0, ..., n-1 with s0=0, ai∈a, bi∈b.
The computation of the next MADD operation is dependent on the completion of

the previous operation, so a new MADD cannot start until the previous has finished,
thus waiting for the latency L of the MADD.

To avoid paying this penalty, we can exploit the commutativity and associativity of
the ADD operation (let us neglect the effects of the limited precision). Under the
commutative and associative hypothesis for the ADD and assuming m to be an integer
multiple of L, we can rewrite the scalar product as in the following

 s = ∑ (a୧ ∙ b୧)
୫ିଵ
୧ୀ଴ = ∑ ൬∑ a௝௅ା୧ ∙ b௝௅ା୧

ౣ

ై
ିଵ

୨ୀ଴ ൰୐ିଵ
୧ୀ଴ (5)

where

─ vectors a and b have been partitioned into L sub-vectors ai and bi,
─ L partial scalar products are computed (expression in brackets) and finally
─ the result is derived by summing the L partial scalar products (external sum).

In the previous formulation, each partial scalar product has to be updated every L
clock cycles; during its processing (requiring L cycles), the other L-1 partial scalar
products will be processed, each one being at a different stage of the pipeline. Only
the final (i.e., the external) sum requires the accumulation of values where the de-
pendence cannot be completely hidden, thus imposing the payment of some pipeline
penalty.

Following the previous approach, we can compute the scalar product in Nclk clock
cycles, as follows

 Nclk = (m-1) + L + O(LA*log(L)) (6)

where (m-1)+L, are the cycles needed to compute the m MADD operations and
O(LA*log(L)) are the cycles needed to perform the final sum of the L partial scalar
products (LA is the latency of the pipelined add operator) using L/2 adders; if m>>L,
Nclk≈m. In our case m>>L, so we compute the 2m operations required by the scalar
product in Nclk≈m clock cycles, thus sustaining 2 FP operations per cycle. The sus-
tained speed of the computation is SC=2fck=300 MFlop/s for fck=150 MHz.

As seen in the previous section, to sustain the speed of the computation SC we must
have a BW toward the memory which is at least twice the numerical value of SC

(eq.2)). In this case, the memory BW required by the kernel would be BWreq = 2*SC =
2*300 = 600 MB/s. Referring to the BW of the HMC memory we are using (≈68
GB/s), to saturate the memory BW we should put p=68/0.6=112 kernels in parallel,
which would require 112 ports to access the external memory module: this huge num-

6

ber of ports is not realistic, so we have to find a way to increase the computational
speed of the kernel which performs the basic scalar product, in order to use, with the
BWreq of a single kernel, a significant portion of the available memory BW.

6 The Scalar Product: Exploiting Spatial Parallelism

To increase the computational speed and the BWreq of the kernel which computes the
scalar product, we could further partition each of the L sub-vectors into P sub-vectors
so that, at each cycle, we can start computing P independent partial scalar products.

Let’s rewrite the equation (5) as in the following

 𝑠 = ∑ (𝑎௜ ∙ 𝑏௜)
௠ିଵ
௜ୀ଴ = ∑ ∑ ൬∑ 𝑎୧୔ା୨ା୩୐୔ ∙ 𝑏୧୔ା୨ା୩୐୔

೘

ಽು
ିଵ

௞ୀ଴ ൰୔ିଵ
୨ୀ଴

௅ିଵ
௜ୀ଴ (7)

where vectors a and b have been partitioned into LP sub-vectors, each with m/(LP)
elements; the generic sub-vector vij is defined as

 vij = {viP+j+kLP | k = 0,1,...,m/LP} i=0,1,...,L-1 j = 0,1,...,P-1.

Once partitioned a and b into the LP sub-vectors aij and bij, we compute the LP
partial scalar products sij (expression in brackets in (7)), then we sum all the LP partial
values to obtain the final result.

Using P MADDs, if we can read 2P floating-point values per cycle, the number of
cycles to determine the LP partial scalar products is given by

 Nୡ୭୫୮ = ቂቀ
୫

୔
− 1ቁ + Lቃ. (8)

In fact, after L clock cycles, P MADD results are produced; the remaining (m-P)
MADD results are produced in the following (m-P)/P cycles, as P new results are
produced at every cycle.

Once generated the N = LP sij values, they must be summed together to obtain the
final scalar product.

As already discussed, we can use N/2 adders to perform the sum of N numbers in
⌈𝑙𝑜𝑔ଶ𝑁⌉𝐿஺ clock cycles. If we use PA <N adders, in each layer we can parallelize the
sums among all the PA adders. It’s easy to verify that the number of cycles to compute
the sum of N=LP numbers using PA pipelined adders is given by

 NCyclesୱ୳୫(P୅) = ∑ ቀቒ
୒

ଶ౟

ଵ

୔ఽ
ቓ + L୅ቁ ≈

⌈୪୭୥మ(୒)⌉
୧ୀଵ

୒

୔ఽ
+ ⌈logଶ(N)⌉L୅. (9)

The number of cycles NCyclesSP necessary to compute the scalar product of two
vectors of size m using P pipelined MADD modules, with latency L, and PA pipelined
adders, with latency LA, is given by

 NCyclesୗ୔ = Nୡ୭୫୮ + NCyclesୱ୳୫(P୅). (10)

From (8), (9) and (10) we get

7

 NCyclesୗ୔ ≈
୫

୔
+ L +

୐୔

୔ఽ
+ ⌈logଶ(LP)⌉L୅. (11)

From the previous expression, we can compute the sustained speed of the computa-
tion (expressed in operations/cycle) as

 SustainedSpeed =
ଶ୫

ౣ

ౌ
ା୐ା

ైౌ

ౌఽ
ା⌈୪୭୥మ(୐୔)⌉୐ఽ

. (12)

In previous equation L and LA are fixed by the technology (for instance, with the
current version of QuickCompiler and for the ARRIA10 FPGA, L=8 and LA=3), m is
fixed by the problem, P and PA are the parameters of the architecture that must be
determined to maximize the sustained speed.

P must satisfy the following requirements:

─ must be a power of 2, i.e. P = 2k, because it determines the width of the internal
memory used by the SP kernel (width of the memory must be a power of 2),

─ must be large enough to nearly saturate the memory BW.

In our example, fck=150 MHz and the BW to one bank of the HMC memory is 17
GB/s. Thus, the width W to saturate the BW is given by

 W*fck = BW [Byte/s] => W = BW/fck [Byte]

which gives W = 17000/150 = 113 [Byte]. As W has to be a power of 2, we can set
W=128 [Byte] (the closest to 113), thus fixing the MADD parallelism to 32 (32
MADDs must read 64 floats/cycle; 32 floats come from the buffer memory connected
to the HMC and storing a row of the matrix M and 32 floats come from the buffer
memory connected to the input stream and storing the vector a, read only once at the
very beginning).

When P = 32 and m=8K elements, the number of cycles necessary to compute the
LP partial products sij is (ref. to eq.(8))

 NCyclescomp=(m/P)-1+L=(8192/32)-1+8=263.

If we set PA=4 (adder parallelism), the number of cycles to sum all the partial re-
sults is (ref. to eq. (9))

 NCyclesୱ୳୫(P୅) ≈
୐୔

୔ఽ
+ ⌈logଶ(LP)⌉L୅ =

଼∙ଷଶ

ସ
+ 8 ∙ 3 = 88.

With the previous values, the equation (9) gives a Sustained Speed of 46.7 opera-
tions/cycle; as fck=150MHz, the previous figure corresponds to

 46.7[ops/cycle]*150[MHz] = 7.0 [GFlop/s].

8

7 MVM: Coarse-Grained Pipelining

In the operation b = M x a, the result vector b can be computed through the following
loop

for (l=0; l<n;l++)
 bl=ml∙a; // ml is the l-th row of M

whose body can be decomposed in three basic operations:
for (l=0; l<n; l++){
 load ml from the external memory
 compute the LP partial scalar products sij
 compute the final result bl = i,j (sij)
}
The loop can be repeated in different kernels when the matrix M is partitioned into

p submatrices, as depicted in Fig. 1.
Regarding the time complexity (expressed in number of clock cycles), we can

write the following relations

─ moving 4m bytes from the external memory, accessible through a port with W=4P
bytes, to the internal multi-ported memory requires the number of cycles

 N୫ୣ୫ =
୫

୔
+ L୫ (13)

as the internal memory can accept 4P bytes/cycle; Lm is the latency to access the
external memory; if Wfck=BWreq>BWExtMem, the actual number of cycles will be
larger than Nmem because the required bandwidth Wfck is larger than the available
memory bandwidth;

─ the number of cycles required to compute the LP partial scalar products is given by
eq. (8):

─ the sum of LP values using PA floating-point adders (with latency LA) requires the
number of clock cycles NSum(PA) given by eq. (9).

As the iterations of the loop are independent, the loop can be pipelined, at a coarse
grain, with three pipeline stages:

─ load vector mi,
─ compute the LP partial scalar products sij,
─ sum the LP sij.

The duration of each stage of this “macro-pipeline” is given by

 N୔୧୮ୣୗ୲ୟ୥ୣ = max ቀN୫ୣ୫, Nୡ୭୫୮, Nୗ୙୑(P୅)ቁ. (14)

Being the loop fully pipelined, n+2 “macro-pipeline” stages are required to process
n matrix lines and to compute n scalar products. The number of cycles necessary to
compute the whole MVM, using p equal SP kernels, is given by

9

 N୘୭୲ୟ୪ = ቀ
୬

௣
+ 2ቁ N୔୧୮ୣୗ୲ୟ୥ୣ . (15)

The sustained speed (operations/cycle) is given by the ratio

 S =
୒౥౦౛౨౗౪౟౥౤౩

୒౐౥౪౗ౢ
=

ଶ୬୫

ቀ
౤

೛
ାଶቁ୒ౌ౟౦౛౏౪౗ౝ౛

. (16)

Let’s consider the case characterized by the following parameters:

─ m=n=8192 (m : size of the vector, n: number of scalar products to be computed)
─ LA=3, L= 8 and Lm= 200 cycles (latencies of FP adder, MADD and HMC)
─ P=32 (spatial parallelism, i.e., number of MADD operations performed in parallel)
─ PA=1 (1 adder is used to sum the LP partial scalar products)
─ p=2 (kernel parallelism, i.e., number of equal kernels, each one performing the

scalar product)

Previous values, when inserted in the expressions derived above, give the follow-
ing values:

─ Nmem= m/P+Lm = 456 ,
─ Ncomp = m/P+LMADD = 264 ,

─ 𝑁ௌ௎ெ(𝑃஺) ≈
௅௉

௉ಲ
+ ⌈𝑙𝑜𝑔ଶ(𝐿𝑃)⌉𝐿஺ = 280.

So NPipeStage=456 and the sustained speed, when fck=150 MHz, is

S =
N୭୮ୣ୰ୟ୲୧୭୬ୱ

N୘୭୲ୟ୪

=
2nm

ቀ
n
𝑝

+ 2ቁ N୔୧୮ୣୗ୲ୟ୥ୣ

= 71.82 ൤
ops

cycle
൨ = 10.8 ൤

GFlop

s
൨.

It’s worth to be underlined that, when we ran on the XComp board the test devel-
oped using previous values, we measured an overall speed of 10.6 [GFlop/s], in per-
fect agreement with the performance foreseen by the model (see Table 1, reported in
the section related to performance).

8 FPGA Implementation of the MVM Through the QuickPlay
HLS

In this section, we analyze the actual FPGA implementation of the MVM algorithm,
based on the considerations illustrated in the previous sections.

To achieve the FPGA implementation, we use the Accelize HLS framework
(QuickPlay with its embedded QuickCompiler HLS engine [6], formerly produced by
Accelize and to be shortly released as Open Source SW).

We refer to the architecture depicted in Fig. 1 and, in the following Fig. 2, we re-
port the QuickPlay schematic representing that architecture, in the case of p=4 SP
kernels.

10

Fig. 2. top level of the design with p=4 SP kernels, as shown in the QuickPlay VisualEditor

In the previous design, we can recognize the four VectorMatrixProduct kernels,
each performing n/4 scalar products: they are connected to four different HMC
memory banks. The first mySplit kernel is used to divide the input data coming from
the input port in

a) the configuration part (8 bytes sent to the config_in - config_out chain to dis-
tribute the Id of the computing kernels) and

b) the data part (data are the values of the matrix M to be stored in the memory and
the vector a to be multiplied with the matrix) which is sent to the 4 computing kernels
through a streamCopy kernel.

The last BuildResultVector kernel is used to concatenate the results produced by
the four VectorMatrixProduct kernels, generating the result vector.

8.1 The Scalar Product

As seen in the §6, the basic step to compute the scalar product between the lth row of
the matrix (ml) and the input vector a is the following

 compute the LP values

s୧୨ = 𝐦𝐥:𝐢𝐣 ∙ 𝐚𝐢𝐣 = ෍ ൫m୪:୧୮ା୨ା୩୐୔ ∙ a୧୮ା୨ା୩୐୔൯
i = 0,1, … , L − 1
j = 0,1, … , P − 1

୫
௅௉

ିଵ

௞ୀ଴

which requires the computation of LP partial scalar products. The basic operation

to implement these scalar products is the vector multiply-and-add pipelined function
which takes as input P pairs of single-precision floating-point variables and produces
P floating-point values (in our implementation P = 32), performing the computation

 ci += ai×bi; i=1,2,…,P.

The sketch of the QuickPlay C code to implement the vector pipelined MADD is
the following

11

/*#qp pipeline */
Void MADD(float a1,…a32, float b1,… b32,float &c1,… &c32)
{
 c1 += a1*b1;
 …
 c32 += a32*b32;
}
Thanks to the /*#qp pipeline*/ directive the previous function is synthesized as a

pipelined function which performs 2P=64 floating-point operations per cycle (P add
and P mul).

From the synthesis reports of QuickCompiler we know that previous function re-
quires 7 cycles to produce the output results, so LMADD=7 cycles; we use L=8 to in-
clude the cycle needed to read the data from the memory. The MADD is implemented
through the instantiation of 32 fp adders and 32 fp multipliers.

The MADD() function computes the LP scalar products sij i=0,..,L-1 and
j=0,1,…,P-1 through the following code:

count=0; count1=1; …,count31=31; //init the 32 count vars
/*#qp unroll 32*/
for (i=0; i<(m)/(L*P); i++){
 a1 = a[count];
 …
 a32 = a[count31];
 b1 = b[count];
 …
 b32 = b[count31];
//1st group of 32 MADD scalar operations
 MADD(a1, …,a32,b1,…,b32,s0_0,…,s0_31);

 Inc(count,…,count31);//each count var is incremented by 32
 …
 a1 = a[count];
 …
 a32 = a[count31];
 b1 = b[count];
 …
 b32 = b[count31];
 //8th group of 32 MADD scalar operations
 MADD(a1,…,a32,b1,…,b32,s7_0,…,s7_31);
 Inc(count,…,count31); //each count var is incremented by 32
}
In our example the size of the vector m assumes the value m=8192 and L×P = 256.

The loop is executed m/(LP) = 8192/256=32 times, so the directive /*#qp unroll 32*/
unrolls completely the loop.

The scalar variables a1, …, b32 are read from the FastMemory a[] and the
FastMemory b[] in one clock cycle.

12

8.2 FastMemory

The FastMemory modules are the memories used by QuickCompiler to map inter-
nal arrays. They are implemented on embedded ram and are described by the tuple

 FastMemory = <W,G,N,DType, Size>

─ W is the width of the wide “external” port.
─ G is the number of independent groups, each group being formed by N ports; usu-

ally G = 2 (as the embedded Ram modules are dual-ported)
─ N is the number of typed ports in each of the G groups. Each port presents a data

which has size DType;
─ DType is the size (in bytes) of the data type stored in the FastMemory. In

QuickCompiler, each array is stored in a different FastMemory.
─ Size is the size of the memory, expressed in Bytes.

FastMemory has G×N+1 ports.

The large external port, whose width is W=N*DType, is used to transfer data
to/from streams or to/from external memories through the qpReadStream(), qpWrit-
eStream() and memcpy() functions. The bandwidth of read/write through this port is
given by BW = W*fck [Byte/s]; typical value is W=128 [B], fck=150MHz and
BW=19.2 GB/s. The latency to access external memories depends on the available
memory controller; the HMC controller in the XComp board is characterized by a
latency Lm=200 cycles.

The G×N “internal” ports, whose size is DType, are accessed by the kernel. The in-
ternal BW, between the FastMemory and the computing kernel, is G times the BW of
the external port. The latency to read a data from the FastMemory to the kernel is one
cycle while writing a data from the kernel to the fast memory is accomplished in the
same cycle.

Since W≥ Dtype, each group of ports allows accessing N=W/DType elements of
an array at the same clock cycle. As the memory is organized in word of W bytes,
when the first port of a group is used it selects the memory word being accessed and it
allows the other ports of its group to access the other array elements of the word.

The FastMemories a[m] and b[m] have been declared with the directive /*#qp
ports 2 32*/ which specifies that the array, composed by m=8K float elements, is
stored in a memory which has G=2 groups of N=32 ports accessible in parallel, every
port being four bytes wide (as they are float data type). Both a and b FastMemories
are characterized by the tuple

 <W=128, G=2, N=32, DType=4, Size=32768 > .

This means that up to 64 floats can be read/written in parallel in one clock cycle.
In one iteration of the loop, the LP sij values are updated; values sij are mapped on-

to the variables si_j (i=0,..,7 and j = 0,..,31).
The previous loop-code is scheduled by the QuickCompiler HLS engine as de-

scribed in §6, with the performance given by eq. (8).

13

Looking in the QuickCompiler timing report, we see that the execution of the
module implementing the previous code requires 264 clock cycles, in perfect agree-
ment with the formula derived from the analysis Ncomp=m/P+LMADD.

After having computed the LP sij values, we must sum them together to obtain the
result i.e., we must implement the expression

b୪ = ෍ ෍൫s୧୨൯

୔ିଵ

୨ୀ଴

௅ିଵ

௜ୀ଴

.

The previous formula is very simply computed through the following (not pipe-
lined) function

float Sum(float s0_0,..., float s7_31)
{
 float result;
 result =s0_0+s0_1+...+s0_31+s1_0+...+s7_31; //256 operands
 return result;
}
which is scheduled by QuickCompiler on one fp adder and requires 263 clock cy-

cles to be executed, slightly better than the simplified model presented in the §6, eq.
(9), which was foreseeing 280 clock cycles (in our simplified model we are neglecting
the possibility to start the computation of a new layer of sums in the tree adding
scheme before terminating the previous layer).

Putting the things together, the number of cycles requested to compute the scalar
product of two vectors a and b, each containing m=8192 floating-point values and
stored in two dedicated FastMemory modules, each module having G=2 groups of
N=32 ports 4 bytes wide, requires 264 + 263 = 527 clock cycles. This figure corre-
sponds to (nearly) 31 [flop/cycle] which, for a clock frequency fck=150 [MHz], gives
the sustained speed S=31*150= 4650 [MFlop/s].

8.3 MVM with a Coarse-Grained Pipeline

We use the just described scalar product module as a basic block to perform the
MVM; the pseudo-code for the MVM is the following:

load vector a;
for (i=0; i<n; i++)
{
 load mi, the ith row of M;
 Compute the LP sij values as partial scalar products
 Sum all the sij
}

While the loading of the a vector is negligible, as it is performed only once, before
starting the actual computation loop, the load of the mi vector is relevant because it
lasts for Nmem=Lmem+m*D/W cycles, being

14

- Lmem the latency to access the external memory (in our case Lmem≈200)
- W the width of the “external” port of the FastMemory (W=128 [Byte])

In our case (n=m=8192, W = 128, LMADD=8, LA=3, PA=1)
- Nmem = 456
- Ncomp = 264
- Nsum = 263

and the global number of cycles necessary to compute b = M x a is given by

 Nseq = n*(Nmem+Ncomp+Nsum). (17)

As the number of floating-point operations to compute the MVM is Nflop=2nm, the
speed expressed in number of operations per cycle is given by

 𝑆௢௣௦/௖௬௖௟௘ =
ଶ௡௠

௡൫ே೘೐೘ାே೎೚೘೛ାேೞೠ೘൯
≈ 16.7 ቂ

௢௣௦

௖௬௖௟௘
ቃ.

 Considering that each iteration of the computing loop is independent on the others,
it is immediate to think to a pipelined scheme to overlap the three operations (Fig. 3):

Fig. 3. Gantt for the pipelined execution of the MVM

 The computation, arranged according to previous scheduling, can be executed in
Npipe cycles

 Npipe = n*Nmem+Ncomp+Nsum. (18)

 The speed-up of the pipelined implementation, with respect to the not-pipelined
implementation, is given by

 𝑆 =
ேೞ೐೜

ே೛೔೛೐
=

଼.ଵ×ଵ଴ల

ଷ.଻×ଵ଴ల = 2.2

from which we can derive the expected speed for the pipelined implementation, in
ops/cycle, through the following expression

𝑆௢௣௦/௖௬௖௟௘(𝑝𝑖𝑝𝑒) = 𝑆௢௣௦/௖௬௖௟௘(𝑠𝑒𝑞) ∗ 𝑆 = 16.7 ∗ 2.16 = 36.01 ൤
𝑜𝑝𝑠

𝑐𝑦𝑐𝑙𝑒
൨.

 The speed, in flop/s, is obtained as in the following

𝑆௙௟௢௣௦/ୱ = 𝑆௢௣௦/௖௬௖௟௘ ∗ 𝑓௖௞ = 36.01 ∗ 150 = 5411 ൤
𝑀𝐹𝑙𝑜𝑝𝑠

𝑠
൨.

 The scheduling described in Fig. 3 is enforced by the QuickPlay HLS when com-
piling the following code:

15

 ...
 qpReadStream(d_in_0,a1,NbElem*sizeof(float));//read vect a
 ReadVector(b1, Matrix,row); row++; // read a row of M
 ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);
 sum1 = Sum(cr0_0,..., cr0_31);
 ReadVector(b2, Matrix, row); row++;
 ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);
 ReadVector(b3, Matrix, row); row++;
 for (i=0; i<myNbProducts-6; i+=3)
 {
 Write(dout,sum1,false); //send an element of the result

//vector
 sum2 = Sum(cr0_0,..., cr0_31);
 Write(dout,sum2,false);
 ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);
 sum3 = Sum(cr0_0,..., cr0_31);
 Write(dout,sum3,false);
 ReadVector(b1, Matrix, row); row++;
 ComputePartialScalarProducts(a1, b1, cr0_0,..., cr0_31);

 sum1 = Sum(cr0_0,..., cr0_31);
 ReadVector(b2, Matrix, row); row++;
 ComputePartialScalarProducts(a1, b2, cr0_0,..., cr0_31);
 ReadVector(b3, Matrix, row); row++;
 }
 Write(dout,sum1,false);
 i++; //i is the number of written values
 sum2 = Sum(cr0_0,..., cr0_31);
 Write(dout,sum2,false);

i++; //i is the number of written values
 ComputePartialScalarProducts(a1, b3, cr0_0,..., cr0_31);
 sum3 = Sum(cr0_0,..., cr0_31);
 Write(dout,sum3,i==NbProducts-1);
 …

In previous code we can recognize three sections:

─ the preamble, to fill the pipeline modules; in this section, we find the read (once for
all) of the a vector, the read of the first three rows of M, two computations of the
partial scalar results and one sum operation.

─ the loop, which implements the steady-state of the pipelined behavior; in this sec-
tion we find three reads of rows of M, three computations of partial scalar result,
three sum operations and the write to the output of three results i.e., the manual un-
roll of three complete processing of three rows of M;

─ the postamble, which empties the pipeline (no more matrix rows are read). In this
phase it is finished the processing of the last three rows. It is the dual of the pream-
ble; we have no read, one computation of the partial scalar products, two sum op-
erations and three write of the results.

To ensure the parallel execution of the different functions accessing the same ar-
ray, we used three different buffers to store the rows of matrix M.

The QuickPlay project which instantiates all the available 4 HMC memory mod-
ules, each connected to one Compute MatrixVectorProduct, is reported in Fig. 2.

Both the input and output ports have been mapped onto a PCIe interface.
The PCIe IP, HMC controller IP, clock and reset generator IP, as well as the copy

IP and the FIFO IP are all part of the QuickPlay distribution and are instantiated by

preamble

postamble

16

the tool in a transparent way (clock & reset generator, FIFO) or based on the configu-
ration derived from the Visual Editor. The computing kernels are generated by
QuickCompiler, the HLS engine of QuickPlay.

9 Performance Results

To show the performance achieved, in terms of both speed and resource usage, we
report for the different designs developed (with 1, 2, 3 and 4 kernels, each performing
the MVM on a portion of the matrix M)

─ the sustained speed [GFlop/s] measured on actual runs on the MicroGate board
(equipped with one ARRIA 10 FPGA and 4 HMC memory banks),

─ the resource used (ALM - Arithmetic Logic Modules, memory modules M20K).

Table 1. Results when implementing the MVM with 1, 2, 3 and 4 SP kernels

 1 Kernel 2 Kernels 3 Kernels 4 Kernels

Speed [GFlop/s] 5.3 10.6 15.9 21.0

ALM 88547 190648 264600 282473

M20K 500 959 1378 2045

The design presents nearly linear scaling for computational performance.
To understand how resources are used, we report, for the largest design using four

equal MatrixVectorProduct kernels, the percentage of the resources (ALM, M20K)
used to implement

─ the PCIe interfacing IP : ALM 2.7%, M2K 0.7%
─ the MatrixVectorProduct kernels: ALM 5.3%, M2K 8.1% each kernel
─ the HMC memory controllers : ALM 7.0%, M2K 5.7% each controller
─ the other auxiliary modules (reset and clock generators, FIFOs, mySplit and

BuildResultVector modules, …) : ALM 18.6%, M2K 22.9%

When the FPGA board was configured with the design using four SP kernels, the
power consumption of the board was 40 W, resulting in the energy efficiency of 0.53
GFlop/s/W.
Even if we think that comparison with other implementations is a weak way to evalu-
ate an implementation, we report an alternative realization of the MVM to verify that
the proposed solution is aligned with what is allowed by the current technology.

The work presented in [14] reports the implementation of several BLAS routines,
including the MVM. The performance of this routine is reported in the case of a
1024x1024 matrix stored within the internal RAM, thus not requiring any communi-
cation with the DDR banks; in the case of vectorization width set to 64 (i.e., perform-
ing in parallel 64 multiply operations) it is reported a computing speed greater than 20
GFlop/s (both in single and in double precision). While giving an idea of the perfor-

17

mance achievable by the hardware in the FPGA, such a figure would require a signifi-
cantly large I/O BW to be sustained for larger matrices (as the 8Kx8k matrices used in
our case): the proper buffering and macro-pipelining of the computation to sustain the
traffic with the DDR memory is not addressed in [14], not being this the core of the
FBLAS implementation.

10 Future Developments

Looking at the Gantt reported in Fig. 3, we see that the transfer of one line of matrix
M from memory lasts longer (456 cycles) than the computation of the partial scalar
products (264 cycles) and the final sum (263 cycles). This happens because Quick-
Play HLS does not support outstanding read operations, which would allow overlap-
ping different memory transfers. Could we use outstanding memory reads, the latency
of the next transfer could be overlapped with the actual data transfer of the current, as
in the following:

Fig. 4: pipelined implementation with support to outstanding read operations

In the previous figure, we decomposed the time to transfer data from HMC to the
kernel into the latency L(mi) and the actual data transfer. It’s easy to verify that the
number of cycles needed to perform the computation shown in Fig. 4 is given by

Npipe = n*max(L(m), Nmem, Ncomp, Nsum)+L(m)+Nmem+Ncomp+Nsum.

In our case (n=m=8192) the values are L(m)=200, Nmem=256, Ncomp=256 and
Nsum=263 which yeld

Npipe = n*264 + 983

Previous value corresponds to

𝑆௢௣௦/௖௬௖௟௘(𝑝𝑖𝑝𝑒) =
2𝑛𝑚

264𝑛 + 983
≈ 62[

𝑜𝑝𝑠

𝑐𝑦𝑐𝑙𝑒
]

i.e., 9.3 GFlop/s when fck=150 MHz, very close to the limit imposed by the memory
BW.

11 Conclusions

The activities performed to implement on FPGA the MVM through the QuickPlay
HLS flow have been described.

18

We started formalizing the problem, describing how parallelism is a key factor to
achieve the expected performance and we showed how parallelism could be intro-
duced at 4 different levels:

─ (spatial) parallelization over the different rows of the matrix, computing in parallel
the scalar products between the input vector and p different rows of the matrix M

─ parallelization (pipelining) of the basic scalar product, achieved thanks to the in-
troduction of L different independent partial scalar products to break the data de-
pendence characterizing the classical accumulation scheme (L is the latency of the
basic Multiply and Add pipelined operation)

─ parallelization derived from the iteration of the previous decomposition, dividing
each of the L sub-vectors into P smaller sub-vectors, thus performing in parallel P
pipelined partial scalar products

─ coarse-grained pipelining, overlapping different phases of successive scalar prod-
ucts when multiplying the input vector by different rows of the matrix M (read
from external memory, computation of the partial scalar products, sum of the par-
tial results).

Some models to compute the expected performance of the algorithm we have im-
plemented have been presented and discussed. We found a good agreement between
the forecasted and the actual performance. This agreement demonstrates the good
quality of the hardware generated by the HLS engine.

References

1. «energy efficient high performance computing for real-time science,» [Online]. Available:
http://greenflash-h2020.eu/.

2. P. Piatrou e L. Gilles, «Robustness study of the pseudo open-loop controller for
multiconjugate adaptive optics,» APPLIED OPTICS, vol. 44, n. 6, 2005.

3. E. Gendron e et al., «A novel fast and accurate pseudo-analytical simulation approach for
MOAO,» in Proc. SPIE 9148, Adaptive Optics Systems IV, 2014.

4. E. Gendron e et al., «High performance pseudo-analytical simulation of multi-object
adaptive optics,» in Euro-Par 2014.

5. O. Guyon e e. Al., «The compute and control for adaptive optics (CACAO) real-time
control software package.,» in Proc. SPIE 10703, Adaptive Optics Systems VI, 2018.

6. S. Monboisset, «A Novel Approach to Software-Defined FPGA Computing.,» XCell
Software Journal, n. 2, 2015.

19

7. «BLAS (Basic Linear Algebra Subprograms),» [Online]. Available:
http://www.netlib.org/blas/.

8. S. Kestur e e. al., «BLAS Comparison on FPGA, CPU and GPU,» in ISVLSI, 2010.

9. S. Kestur e e. al., «Towards a Universal FPGA Matrix-Vector Multiplication Architecture,»
in IEEE 20th Int. Symp. on Field-Programmable Custom Computing Machines, 2012.

10. L. Zhuo e V. Prasanna, «High Performance Linear Algebra Operations on Reconfigurable
Systems,» in SuperComputing SC05, 2005.

11. L. Zhuo, G. Morris e V. Prasanna, «Designing Scalable FPGA-Based Reduction Circuits
Using Pipelined Floating-Point cores,» in 19th IEEE International Parallel and Distributed
Processing Symposium, 2005.

12. C. He, G. Qin e R. Ewing, «High-Precision BLAS on FPGA-enhanced Computers,» in
International Conference on Engineering of Reconfigurable Systems & Algorithms, ERSA
2007, 2007.

13. C. He, G. Qin, M. Lu e W. Zhao, «Accurate Floating-Point Summation with Group-
Alignment Technioque on FPGA,» in The Int. Conf. on Engineering and Reconfigurable
Systems and Algorithms, 2006.

14. T. De Matteis, J. de Fine Licht e T. Hoefler, «FBLAS: Streaming Linear Algebra on
FPGA,» ArXiv, vol. abs/1907.07929, 2019.

15. Intel, «Intel FPGA SDK for OpenCL,» 2018. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/products/design-
software/embedded-software-developers/opencl/support.html.

16. A. Abdelfattah, D. Keyes e H. Ltaief, «KBLAS: An Optimized Library for Dense Matrix-
Vector Multiplication on GPU Accelerators.,» ACM Trans. Math. Softw., vol. 42, n. 3,
2016.

17. C. Boyer, V. Michau e G. Rousset, «Adaptive optics: interaction matrix measurements and
real-time control algorithms for the COME-ON project,» in SPIE Astronomical Telescopes
and Instrumentation for the 21st Century,, Tucson, AZ, United States, 1990.

18. C. Patauner e e. al.D., «FPGA based microserver for high performance real-time computing
in Adaptive Optics,» in Proc. of the "Adaptive Optics for Extremely Large Telescopes"
(AO4ELT5), 2017.

